74,452 research outputs found

    Spread spectrum techniques for indoor wireless IR communications

    Get PDF
    Multipath dispersion and fluorescent light interference are two major problems in indoor wireless infrared communications systems. Multipath dispersion introduces intersymhol interference at data rates above 10 Mb/s, while fluorescent light induces severe narrowband interference to baseband modulation schemes commonly used such as OOK and PPM. This article reviews the research into the application of direct sequence spread spectrum techniques to ameliorate these key channel impairments without having to resort to complex signal processing techniques. The inherent properties of a spreading sequence are exploited in order to combat the ISI and narrowband interference. In addition, to reduce the impact of these impairments, the DSSS modulation schemes have strived to be bandwidth-efficient and simple to implement. Three main DSSS waveform techniques have been developed and investigated. These are sequence inverse keying, complementary sequence inverse keying, and M-ary biorthogonal keying (MBOK). The operations of the three systems are explained; their performances were evaluated through simulations and experiments for a number of system parameters, including spreading sequence type and length. By comparison with OOK, our results show that SIK, CSIK, and MBOK are effective against multipath dispersion and fluorescent light interference becausc the penalties incurred on the DSSS schemes are between 0-7 dB, while the penalty on OOK in the same environment is more than 17 dB. The DSSS solution for IR wireless transmission demonstrates that a transmission waveform can he designed to remove the key channel impairments in a wireless IR system

    Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    Get PDF
    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled

    Studies of Neutrino-Electron Scattering at the Kuo-Sheng Reactor Neutrino Laboratory

    Full text link
    Studies on electron antineutrino-electron elastic scattering were performed using a 200-kg CsI(Tl) scintillating crystal detector array at the Kuo-Sheng Nuclear Power Plant in Taiwan. The measured cross section of R(exp) = [1.00 +- 0.32(stat)]xR(SM) is consistent with the Standard Model expectation and the corresponding weak mixing angle derived is sin2T = 0.24 +- 0.05 (stat). The results are consistent with a destructive interference effect between neutral and charged-currents in this process. Limits on neutrino magnetic moment of mu(nu_(e)) < 2.0 x 10^(-10) mu_(B) at 90% confidence level and on electron antineutrino charge radius of r^(2) < (0.12 +- 2.07)x10^(-32) cm^2 were also derived.Comment: Parallel talk at ICHEP08, Philadelphia, USA, July 2008. 4 pages, LaTex, 4 eps figure

    Robust active heave compensated winch-driven overhead crane system for load transfer in marine operation

    Get PDF
    Active heave compensation (AHC) is important for load transfer in marine operation using the overhead crane system (OCS). The control of marine OCS aims to continuously regulate the displacement of the cart and the payload sway angle, whilst at the same time, maintaining the gap between the payload and the vessel main deck at a desirable and safe distance. As the marine OHC system is to be operated in a continuously changing environment, with plenty inevitable disturbances and undesirable loads, a robust controller, i.e., active force control (AFC) is thus greatly needed to promote accuracy and robustness features into the controllability of OCS in rough working environment. This paper highlights a novel method for controlling the payload in an OCS based on the combination of both AFC and AHC. Results from the simulation study clearly indicate that the performance of OCS can be greatly improved by the proposed robust AFC controller, as compared with the classical PID controller scheme
    • …
    corecore